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1. Introduction

The numerical solution of partial differential equa-
tions (PDEs) is the most computationally intense part of
solving mathematical models with many important ap-
plications. For this reason, much research has been per-
formed to find faster methods to solve PDEs at higher
resolution. In recent years much of the attention has
been focused on methods for parallel computers to re-
duce the computation time by taking advantage of con-
current processing of data in different regions of the
domain, and to increase the resolution of the model by
taking advantage of the larger memory available in par-
allel computers. To effectively utilize a parallel com-
puter, it is important that the data be distributed over the
processors in a balanced manner, so that each processor
will complete its work load at approximately the same
time, i.e., no processors will sit idle waiting for other
processors to complete their work. For simple iterative
solvers and uniform grids this partitioning of the data is
fairly straight forward.

On sequential computers, multilevel adaptive meth-
ods, i.e., methods that combine adaptive grid refinement
and full multigrid, have been shown to have optimal

efficiency for many classes of PDEs [1,2,3,4,5,6]. How-
ever, effective implementation of these techniques on
parallel computers is still not understood. Adaptive re-
finement produces a nonuniform grid in which the grid
points are concentrated in the areas that need higher
resolution. This nonuniformity causes problems in bal-
ancing the computational load among the processors
and complicates the communication patterns between
the processors. The full multigrid method is an optimal
order solution method for the linear system of equations
that results from the discretization of the PDE. The
technique involves cycling through a nested sequence of
grids with varying degrees of coarseness, which results
in irregular communication patterns between the pro-
cessors and a variable degree of parallelism. Consider-
able research has been done to parallelize the individual
components (see, for example, the proceedings of the
SIAM conferences on Parallel Processing for Scientific
Computing), but the combination of these results to
form a parallel multilevel adaptive method is still being
investigated [7,8,9].

405



Volume 103, Number 4, July–August 1998
Journal of Research of the National Institute of Standards and Technology

Among the barriers to efficient parallel implementa-
tion of these methods is the balancing of the computa-
tional load among the processors in an environment
where the grid is dynamically changing through adap-
tive mesh refinement. It is not obvious how to partition
the data associated with a nonuniform grid generated by
adaptive refinement, and any method to determine such
a partition must be very fast to avoid dominating the
time used by a fast multigrid solver. In this paper a fast
partitioning algorithm based on the refinement tree is
presented and analyzed in terms of the desirable proper-
ties and goals of partitioning algorithms.

We consider a parallelization of the methods used in
MGGHAT [10], an adaptive multilevel finite element
program for elliptic PDEs in two dimensions. The gen-
eral structure of the algorithm is given in Fig. 1. This is
a full multigrid method which begins with a very coarse
mesh, and alternately performs phases of adaptive re-
finement and multigrid cycles until some termination
criterion is met; for example, an estimate of the dis-
cretization error is small enough. In the parallel version,
dynamic load balancing is inserted after the refinement
phase since the adaptive refinement may produce more
grid elements on some processors than others. The load
balancing phase can be skipped when the load remains
reasonably well balanced.

Fig. 1. Adaptive multilevel algorithm.

This paper addresses dynamic load balancing in the
context of this specific algorithm, although most of the
principles can be applied to other algorithms as well.
Further details of the sequential form of this algorithm
can be found in Ref. [4]. It is a finite element method for
elliptic partial differential equations in two dimensions
using piecewise linear basis functions over triangles.
Adaptive refinement is achieved by the newest node
bisection method with a hierarchical basis error esti-
mate. The multigrid method is a V-cycle with a Gauss-
Siedel or Jacobi smoother, and restriction and prolonga-
tion operators based on the hierarchical basis.

The parallelization is based on domain decomposition
to give each processor a region of the domain. The data

distribution uses the FuDoP (Full Domain Partition)
approach [8,11], in which each processor receives the
grid for a subdomain plus additional ‘‘shadow’’ ele-
ments to cover the whole domain. FuDoP can be viewed
as domain decomposition with a small overlap on each
level of the multigrid sequence.

The computational environment for which the load
balancing techniques are discussed consists of a SPMD
(Single Program Multiple Data) message passing model
for distributed memory MIMD (Multiple Instruction
Multiple Data) architectures with a moderate number of
processors connected by a high-latency low-bandwidth
network. An example of such an environment is a net-
work of workstations using PVM [12] or MPI [13] for
message passing. This type of computing environment
is growing in popularity as scientists with modest re-
sources realize that they can effectively have a low cost
personal supercomputer by connecting a handful of
commodity workstations or PCs with off-the-shelf net-
working technology. This environment demands parallel
algorithms with less frequent communication steps than
those developed for massively parallel computers with
faster specialized networks.

Dynamic load balancing in this context can be
achieved by a global grid partitioning algorithm, by a
local migration method [14,15], or by a hybrid of the
two approaches. In this paper the first approach is con-
sidered. The refinement-tree partitioning algorithm [16]
is employedwhenever the load becomes too unbalanced.

In Sec. 2 the important properties of partitioning
algorithms are discussed. In particular, they are exam-
ined in the context outlined above. Section 3 presents the
refinement-tree partitioning algorithm. In Sec. 4 the
refinement-tree partitioning algorithm is analyzed, for
the above context, in terms of the most important prop-
erties from Sec. 2. Finally, in Sec. 5 the parallel imple-
mentation of the refinement-tree partitioning algorithm
is considered.

2. Important Properties of Partitioners

The ultimate goal of a partitioning algorithm is to
partition the grid for distribution over the processors
such that the total running time of the solver is mini-
mized. The actual running time can depend on many
factors, most of which are out of the scope of the parti-
tioning algorithm, so this goal is usually approximated
by two other goals: 1) balance the computational load,
and 2) minimize the communication. In fact there are
several desirable properties for a partitioning algorithm
that contribute towards these goals [16]. The relative
importance and relevance of these properties depends
on the environment in which the partition will be used
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and the algorithms that will be applied to the partitioned
data. For example, in static load balancing the partition-
ing algorithm is applied as a preprocessing step, so
speed is not crucial and minimization of the communi-
cation is more important. But in dynamic load balanc-
ing, the partitioning algorithm is part of the solver, so it
is important that the algorithm be fast.

In this section, the partitioner properties listed in Ref.
[16], plus two additional properties, are considered in
the context of adaptive multilevel methods for two di-
mensional elliptic PDEs with the full domain partition.
They are presented in approximate order of importance
in this context, and begin with the statement of the
properties given in Ref. [16], emphasized by italics.

Speed—The algorithm should be very fast so the par-
titioning algorithm does not dominate the execution time
of the PDE solver. Recall from Sec. 1 that the grid may
be repartitioned after each refinement phase of the al-
gorithm. It would make no sense to use a parallel com-
puter for speed if the gains through parallelism are lost
to the partitioning algorithm. It is therefore imperative
that the time used by the partitioning algorithm be small
relative to the sum of the times used by the refinement
and multigrid algorithms. It does not have to be the
fastest algorithm available, but it must make only a mi-
nor contribution to the total running time.

Parallel—It should be possible to implement the al-
gorithm in parallel. In particular, the data in this context
are distributed over the memories of the processors. The
algorithm must be able to cope with the distributed data
with a minimum of communication, because it would be
too expensive to collect the data onto one processor for
use by a sequential partitioning algorithm. Moreover,
the processors must be simultaneously performing use-
ful work to avoid a sequential bottleneck.

Balance—The algorithm should produce equal sized
partitions to balance the computational load on the
processors. This is one of the primary goals of the
partitioning algorithm. Note that ‘‘equal sized’’ does
not necessarily mean that the partitions contain the
same number of grid elements. The metric used for
measuring the size of the partitions should reflect the
amount of computation to be performed between com-
munication steps. In the case of multigrid with FuDoP,
where communication occurs after each half V-cycle,
the metric should take into account the grid at each level,
not just the finest grid. The partitioning algorithm
should be flexible enough to allow alternative metrics,
possibly through the use of weighted elements.

Nestedness—The algorithm should produce similar
partitions for two grids when one is a refinement of the
other to minimize the amount of data migration during
redistribution. This property is very important in adap-
tive multilevel methods where the solver is applied to a

sequence of adaptively refined grids. After each reparti-
tioning, which may occur after each refinement phase,
the data must be redistributed among the processors. If
the new partition differs greatly from the old partition,
the amount of communication that occurs during redis-
tribution can be overwhelming. It is desirable for the
difference between the old and new partitions to be a
section of elements near the partition boundaries, so that
the effect is a migration of elements to neighboring
processors. A similar property applies to the context of
adaptive grids for time dependent problems.

Crossings—The number of edges crossing from one
partition to another should be minimized to reduce the
amount of interprocessor communication. This is often
considered to be the most important property, especially
in the context of static partitioning, because it deter-
mines the amount of data that must be communicated to
keep ‘‘shadow’’ copies of data on the other processors
current. However, in the context presented in Sec. 1
where the solver consists of one or two multigrid cycles,
it is less important than the nestedness property because
of the relative amounts of communication that would be
generated if either was poorly done. The crossings prop-
erty is more important in contexts where many itera-
tions of the solver are performed between repartition-
ings. It should, however, still be considered as one of the
important properties in the current context. With Fu-
DoP, the measure associated with the crossings property
should be modified slightly. The amount of data com-
municated depends on the total number of ‘‘shadow’’
data entities, not just on the number that have connec-
tions crossing the partition boundaries. This can be ap-
proximated by summing the number of crossings over
all the multigrid levels.

Connectedness—Each partition should be a con-
nected set to provide locality compactness of the sub-
problem assigned to a processor, and reduce interpro-
cessor communication. This is a desirable property, but
not generally that important. If this property holds, then
it intuitively improves the properties of crossings and
neighbors (defined below). However it is not a necessary
condition for those properties. In the context of FuDoP
it is a little more important because a fragmented parti-
tion will produce a larger number of additional elements
to cover the full domain.

Multilevel—For the sequence of grids used by a
multigrid method, the balance and crossings properties
should hold for each of the grids. This would be impor-
tant for a parallel multigrid method that performs com-
munication on each grid during the multigrid cycle.
However, with FuDoP the communication occurs after
each half V-cycle, so it is more important to consider
the sequence of grids as a whole rather than the individ-
ual grids.
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Neighbors—The maximum number of neighboring
partitions should be minimized to reduce the number of
messages that must be sent. Generally, this is an impor-
tant property, especially in high latency environments
where the message start-up time is large. In the context
of FuDoP as it is currently formulated, this property is
irrelevant because there is full connectivity in the com-
munication pattern between the processes.

3. Refinement-Tree Partition

Several algorithms for partitioning nonuniform grids
have been developed. Some of these have been imple-
mented in the Chaco software package [17], and others
are described elsewhere, for example [18,19,16]. These
methods can be divided into two classes: slow nearly-
optimal methods and fast suboptimal methods. The slow
methods produce partitions that are nearly optimal in
terms of some property, usually minimization of the
number of crossings. These methods are appropriate for
static load balancing where a grid will be partitioned
once, and that partition will be used many times. The
fast methods are more appropriate for dynamic load
balancing where one is willing to sacrifice some opti-
mality for the sake of speed.

In this section the refinement-tree partitioning al-
gorithm introduced in Ref. [16] is presented. This
method is based on the refinement tree that is generated
during the process of adaptive grid refinement. It is not
as generally applicable as the other fast algorithms,
which use only information contained in the final grid,
but in the context of adaptive multilevel methods it is
able to produce higher quality partitions by taking ad-
vantage of the additional information about how the grid
was generated.

The refinement-tree partitioning algorithm is a recur-
sive bisection method. This means that the core of the
algorithm partitions the data into two sets, i.e., bisects
the data. The algorithm then bisects those two sets to
produce four sets, and so forth until the desired number
of sets is produced. Recursive bisection methods can
only be used when the desired number of sets is a power
of 2, which is a common situation on multiprocessors.

As presented, the algorithm depends on refinement
being performed by bisection of triangles [4] which
produces a binary refinement tree. Slight modifications
to the algorithm are required for other settings. For
example, if refinement divides an element into four parts
instead of two, intermediate layers can be inserted in the
refinement tree to convert the quadtree to a binary tree.

The refinement treeof an adaptive triangular grid
generated by bisection refinement is a binary tree con-
taining one node for each triangle that appears during

the refinement process. (It may actually be a forest, but
the individual trees can be connected into a single tree
by adding artificial nodes above the roots.) The two
children of a node correspond to the two triangles that
are formed by bisecting the triangle corresponding to
the parent node. In Fig. 2, the numbering of the triangles
in the grid and the nodes in the tree indicates the rela-
tionship.

The nodes of the tree have two weights associated
with them; a personal weight and a subtree weight. The
personal weightis a representation of the computational
work associated with the corresponding triangle. For
example, a smaller weight can be used for elements
containing Dirichlet boundary equations which require
less computation than interior equations. Also note that
the interior nodes, i.e., those that are not leaves, corre-
spond to triangles in the coarser grids. These nodes can
be assigned nonzero weights to represent the computa-
tion on the coarser grids of the multigrid algorithm,
which is not possible with partitioning algorithms that
only consider the finest grid. For simplicity, in this
paper a weight of 1 is assigned to the leaf nodes and 0
to the interior nodes, which produces a partition that
equally divides the number of triangles in the finest
grid. This is a first order approximation to the computa-
tional load. Thesubtree weightof a node is the sum of
the personal weights in the subtree rooted at that node.

The algorithm for bisecting the grid into two equal
sized sets is given in Fig. 3. It begins by computing the
subtree weight for each node. This can be performed in
O(N) operations forN triangles, using a depth first
traversal of the tree.

Fig. 2. Refinement trees.
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Fig. 3. Refinement-tree partition bisection algorithm.

Initially the two sets are empty and the weights of the
sets are zero. The algorithm traverses a path down the
tree called thebisection path. At each two-child node in
the path, one of the children and the subtree below it is
assigned to one of the two sets, the subtree weight is
added to the weight of that set, and the other child
becomes the next node in the bisection path. This pro-
cess is explained in detail in the next paragraph. If a
node in the bisection path has only one child (this cannot
happen with the initial bisection of the whole refinement
tree, but can occur when recursively bisecting the result-
ing subtrees where one of the children may be omitted),
then the algorithm simply moves to that child. Eventu-
ally a leaf will be reached, at which point it is placed in
the smaller set and the bisection is complete.

The bulk of the work occurs at nodes that have two
children. First a set is selected for each child for possible
assignment. The first time the selection is made, it is
arbitrary. After that, the triangle associated with one of
the children will share a side with the triangle associ-
ated with the sibling of the parent. The selection for that
child is the set to which the sibling of the parent has
been assigned. The selection for the other child is the
other set. This selection guarantees that the partitions
remain connected. Next, for each child the sum of the
subtree weight of the child plus the weight of the se-
lected set is examined. The child with the smaller sum
is assigned to the selected set, along with the subtree
below it, and the weight of the set is increased by the
subtree weight of the child. The other child becomes the
next node in the bisection path.

After the bisection is complete, two subtrees are
formed. Each consists of the nodes assigned to one of
the sets, plus as much of the bisection path as is needed
to connect the subtree. The bisection algorithm is ap-
plied to each of these subtrees to partition the nodes into
four sets. This process repeats until the desired number
of sets is achieved.

Figure 4 illustrates the bisection algorithm for a sim-
ple triangulation. Light and dark grey are used to repre-
sent the two sets; the white nodes are on the bisection
path. The nodes are labeled with the subtree weights.
The assignment of the triangles to sets after each step is
also illustrated.

Fig. 4. Partitioning the triangles into two sets.
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4. Properties of the Refinement-Tree
Partition

The refinement-tree partitioning algorithm was origi-
nally designed with the goal of producing equal sized,
connected partitions quickly. However, it performs quite
well in terms of the other properties of Sec. 2. In this
section the most important properties are examined for
the refinement-tree partitioning algorithm in the context
established in Sec. 1, except for the parallelism property
which is deferred to Sec. 5. Both theoretical and numer-
ical results are presented. The numerical results are
obtained from Laplace’s equation on the unit square
with a singularity in the boundary condition on the top
side of the domain, which generates a grid that is con-
centrated near the singularity (see Fig. 5).

Speed. The process of summing the weights requires
a depth first traversal of the refinement tree, which can
be done inO(N) operations whereN is the number of
triangles. The remainder of the partitioning algorithm
just traverses a path from the root to a leaf of the tree.

This process requiresO(number of levels) operations,
which is typicallyO(log N). Thus the partitioning into
two sets of sizeN/2 requiresO(N + log N) operations.
A simple calculation shows that recursive application of
the algorithm to producep sets of sizeN/p requiresO(N
log p + p log N) operations.

In numerical experiments [16], the time required by
the refinement-tree partitioning algorithm was com-
parable to the time used by fast, low-quality partition
algorithms like inertial bisection [17].

As pointed out in Sec. 2, the most important aspect of
the speed of the algorithm is that it be much faster than
the refinement and multigrid algorithms that it will be
used with. Table 1 presents the results of numerical
computations with the example problem with approxi-
mately 60 000 vertices in the grid. The CPU time is
shown for the refinement, partition and multigrid
phases. The computations were performed on an IBM
SP21 by a Fortran 90 program using PVM for message
passing.

1 Certain commercial equipment, instruments or materials are identi-
fied in the paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

Fig. 5. Partitions for four nested grids.
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Table 1. CPU times for each phase in seconds

Processors
2 4 8

refine 16.49 9.86 6.01
partition 2.01 1.99 2.10
solve 13.88 8.37 5.33

These results show that the partition algorithm is
faster than the refinement and solution algorithms. It
may be observed that while the time used by refinement
and solution decreases with the number of processors,
the time for partitioning is constant in Table 1. However,
this is just a consequence of the logp factor in the
operation count whilep is small. The dominant part of
the operation count for largeN is asymptoticallycN log
p. On two processors, each performcN/2 log 2 =cN/2
operations. On four processors, the count iscN/4 log
4 = cN/2, which is the same. On eight processors, the
count is 3cN/8 which is slightly smaller, but does not
take into account the communication overhead. Future
numerical studies will investigate the time for partition-
ing with larger numbers of processors.

Balance. The primary objective of a partitioning al-
gorithm is to balance the work load among the proces-
sors. In this paper it is assumed that a sufficiently good
approximation to a balanced load is obtained by equally
distributing the triangles of the finest grid. This is
achieved by assigning a personal weight of 1 to leaf
nodes, and 0 to interior nodes.

It will be shown that the refinement-tree partitioning
algorithm with these weights will produce sets that dif-
fer in size by at most 1. Some notation is required. Let

vi be thei th node in the bisection path, withv0 the root,
w(v) be the subtree weight of nodev,
cj

i be the child ofvi that is selected for setj , j = 0,1,
Sj

i be the weight of setj before visitingvi , j = 0,1.

The following lemma states that at any point during
the bisection algorithm, the number of triangles that
have not yet been assigned is greater than or equal to the
difference between the current sizes of the two sets.

Lemma 1 With the refinement-tree partitioning al-
gorithm using weights defined above, if c0

i is assigned to
set0, then w(c1

i ) $ |S1
i+1 2 S0

i+1|, and if c1
i is assigned to

set1, then w(c0
i ) $ |S1

i+1 2 S0
i+1|.

Proof: This is proven by induction.
Let i = 0. S0

0 andS1
0 have weight 0. Ifc0

i is assigned to
set 0, thenw(c0

0) # w(c1
0), S0

1 = w(c0
0), andS1

1 = 0. Then
w(c1

0) $ w(c0
0) = |02 w(c0

0)| = |S1
1 2 S0

1|. The proof of
the second statement is similar.

Let i $ 1 and assume the conclusion holds fori 2 1.
Only the case wherec0

i is assigned to set 0 is presented;
the other case is similar. Sincec0

i is the child that gets
assigned,

S0
i + w(c0

i ) # S1
i + w(c1

i ) (1)

S0
i+1 = S0

i + w(c0
i ) (2)

S1
i+1 = S1

i (3)

There are two cases.
Case 1.S0

i + w(c0
i ) $ S1

i .
ThenS0

i + w(c0
i ) 2 S1

i $ 0 and equals its absolute value.
From (1), S0

i + w(c0
i ) 2 S1

i # w(c1
i ). The result follows

by taking the absolute value of the left hand side and
using Eqs. (2) and (3).

Case 2.S0
i + w(c0

i ) < S1
i .

Sincew(c0
i ) $ 0, S1

i 2 S0
i > 0 and hence equals its abso-

lute value.vi is in the bisection path, so it is not a node
assigned to a set. By induction,w(vi ) $ |S1

i 2 S0
i | =

S1
i 2 S0

i . By definition w(vi ) = w(c0
i ) + w(c1

i ), hence
w(c0

i ) + w(c1
i ) $ S1

i 2 S0
i , orw(c1

i ) $ S1
i 2 S0

i 2 w(c0
i ) =

|S1
i 2 S0

i 2 w(c0
i )|. Again using (2) and (3),w(c1

i ) $
|S1

i+1 2 S0
i+1|.❚

Theorem 1 The refinement-tree partition algorithm
with a weight of 1 on the leaf nodes and 0 on the interior
nodes will partition the triangles of the finest grid into
p = 2i sets that differ in size by at most 1.

Proof: The first application bisects the tree into two
parts. From Lemma 1, the difference in the weights of
the sets is at most the weight of the final node in the
bisection path. This is a leaf node, and has weight 1.
Since the weight of a set is equal to the number of leaf
nodes in the set, which are in one-to-one correspon-
dence with the triangles in the finest grid, the number of
triangles in the two partitions differ by at most 1. When
recursive bisection is applied to further partition these
sets, it is easily seen that the number of triangles in the
resulting sets will differ by at most 1.❚

Nestedness. The algorithm also seems (from exam-
ple computations) to produce very similar partitions for
two grids when one grid is a refinement of the other.
Figure 5 illustrates the 4-set partition for a sequence of
four refinement steps in one example. Shades of grey
represent the partitions. The following heuristic argu-
ment may explain the similarity. When an adaptive grid
is refined, one would expect most of the refinement to
occur in the same region that previous refinement oc-
curred. In the refinement tree, this means that nodes that
are heavy (i.e., have a large subtree weight) will tend to
get heavier. Since the decision of which child is actually
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assigned to a set depends on which child is lighter, the
same decision is likely to be made most of the time in
two refinement trees when one represents an adaptive
refinement of the other.

Crossings. In a previous numerical study [16], the
number of crossings between the partitions generated by
the refinement-tree partitioning algorithm was com-
pared with other partitioning algorithms for three forms
of adaptive grids. In that study it produced fewer cross-
ings than the other fast suboptimal methods, and only
about 10 % to 20 % more crossings than the slow, nearly
optimal methods like spectral bisection [17].

As stated in Sec. 2, the number of crossings is only a
first order approximation to the volume of communica-
tion in the context of adaptive multilevel methods with
the FuDoP distribution. A better estimate is obtained by
examining the number of shadow triangles since this
determines the amount of data that will be periodically
updated through message passing. In particular, the
number of shadow triangles should be small compared
to the total number of triangles to keep the amount of
communication small compared to the amount of com-
putation. One would expect the number of shadow trian-
gles to grow like the square root of the total number of
triangles in two dimensional problems [8]. Table 2 con-
tains the ratio of the number of shadow triangles to the
number of triangles in the grid for several grid sizes and
2, 4 and 8 processors for the example problem. The
square root relationship is clearly seen.

Connectedness. The algorithm is guaranteed to pro-
duce connected partitions by design.

5. Parallel Refinement-Tree Partition

As explained in Sec. 2 it is important that the parti-
tioning algorithm can be executed in parallel on the
distributed data. It would be much too expensive, both in
communication and idle processors, to send the refine-
ment tree data to a single processor for sequential parti-
tioning.

It is tempting to achieve parallelism by taking advan-
tage of the fact that the partitionings of the subtrees
during recursive bisection are independent. For example,
after partitioning the data into two sets, the partitioning
of the two subtrees to get four sets can be done in
parallel. However, this requires extremely complicated
logic to pass control from one processor to another as
required by the distribution of the data, results in many
processors being idle at any given time, and requires a
high level of communication to provide the final result
to all processors. Instead, an approach can be taken in
which each processor computes the partition indepen-
dently, once the subtree weights are computed, with all
processors arriving at the same answer.

The first part of the refinement-tree partitioning al-
gorithm sums the personal weights in the tree to com-
pute the subtree weights. Since no processor has the
entire tree, this summation requires cooperation be-
tween the processors. First each processor computes the
sums as best it can through a depth first traversal of the
portion of the refinement tree stored on that processor.
In this portion, some leaves represent triangles in the
finest grid, and the subtree weights for those nodes are
known. The summation can proceed above these nodes.
Other leaves are points at which the local portion of the
tree has been ‘‘pruned’’ with the subtree below that
point residing on a different processor, because the cor-
responding triangles do not lie in the partition assigned
to this processor. Here the processor does not know the
subtree weight, and summation above that node must be
deferred. When the partial summation is complete, pro-
cessors exchange the weights at the nodes where prun-
ing has occurred. A second depth first traversal is per-
formed to propagate the summation above the
communicated weights. Note that, to reduce computa-
tion, the parts of the tree where the summation has
already occurred are not traversed again. It is possible
that not all of the weights for the pruned nodes are
available after the first summation, so it may require a
few iterations before all processors are able to propagate
the summation to the root of the tree.

Table 2. Ratio of shadow triangles to total triangles

2 processors 4 processors 8 processors
Total triangles Ratio Total triangles Ratio Total triangles Ratio

5235 0.148 4125 0.300 2451 0.715
8889 0.105 7206 0.227 4502 0.530

13912 0.087 12014 0.167 8074 0.418
21569 0.071 19661 0.162 14989 0.309
34154 0.056 32649 0.108 25243 0.248
52372 0.042 51184 0.089 41344 0.194
81039 0.038 79236 0.079 67042 0.157

123527 0.031 125183 0.064 110297 0.130
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This is illustrated in Fig. 6 for the case of the refine-
ment tree of Fig. 4. The part of the refinement tree
contained on processor 1 is on the left, and the part on
processor 2 is on the right. Note that the root and some
other nodes are contained on both processors so that
each has a full domain partition. The top pair of trees
show the state before the summation begins. The leaves
that represent triangles of the finest grid are labeled with
the subtree weight “1”, those where pruning occurred
are labeled “?” because the subtree weight is unknown,
and the interior nodes are unlabeled because the subtree
weight has not yet been computed. The middle pair of
trees shows the result of the first summation. The pro-
cessors then communicate the weight of the pruned
nodes, which replaces the “?” with the subtree weight
computed by the other processor. The bottom pair of
trees shows the result of the second summation.

When the summation process is complete, all proces-
sors have the same subtree weights for the nodes of the
refinement tree. Therefore each processor can perform
the bisection of the refinement tree independently and
arrives at the same assignment of nodes to sets. For

Fig. 6. Parallel computation of the subtree weights.

recursive bisection to partition the data into more than
two sets, the entire process is repeated on each subtree
defined by the partition as in Sec. 3. This approach
produces the same partitions as the sequential algorithm.

The parallel algorithm has an asymptotic speedup of
p over the sequential algorithm, providedp << N. The
bisection part of the algorithm, which is done simulta-
neously by each processor and hence provides no
speedup, requiresO(p log N) operations which is in-
significant compared to theO(N log p) operations re-
quired by the computation of the subtree weights. The
computation of the subtree weights is asymptotically
equally divided among the processors, with each requir-
ing O(N

p log p) operations, thus exhibiting a speedup of
p.

6. Conclusion

A framework for parallel adaptive multilevel methods
on distributed memory message passing multiproces-
sors was defined. This framework uses a grid partition-
ing algorithm after the adaptive refinement phase to
achieve dynamic load balancing. A set of properties of
partitioning algorithms was presented and examined in
the above context. It was determined that the most im-
portant properties are speed, parallelizability, balance
and nestedness. A modified form of the number of
crossings is also important, and connectivity is desirable.

A partitioning algorithm based on the adaptive re-
finement tree was presented and analyzed. The nodes of
the tree can be weighted to optimize the balance under
different metrics. Weights were presented to optimally
balance the number of triangles in the partitions. It was
proven that the algorithm produces partitions that are as
close to equal in size as possible. Ongoing research is
considering other weightings to optimize the balance in
terms of the computations performed during a multigrid
cycle. An operation count ofO(N log p + p log N),
whereN is the number of triangles andp is the number
of partitions, was established for the algorithm. Numer-
ical experiments using a prototype code demonstrated
that the execution time of the partitioning algorithm is
less than the execution time of adaptive refinement and
multigrid, that the partitions of a sequence of nested
grids are similar, and that the amount of data to be
periodically communicated grows likeÏN. The al-
gorithm is guaranteed to produce connected partitions.
A parallel version of the algorithm was described. In
this version, all communication occurs during the
weight summation part of the algorithm; each processor
computes the bisection of the tree independently. Ongo-
ing research is seeking to further reduce the communi-
cation.

413



Volume 103, Number 4, July–August 1998
Journal of Research of the National Institute of Standards and Technology

7. References

[1] R. E. Bank, PLTMG: A Software Package for Solving Elliptic
Partial Differential Equations, Frontiers in Applied Mathematics
Vol. 15, SIAM, Philadelphia (1994).

[2] A. Brandt, Multi-level adaptive solutions to boundary value
problems, Math. Comp.31, 333–390 (1977).

[3] S. F. McCormick, Multilevel Adaptive Methods for Partial Dif-
ferential Equations, Frontiers in Applied Mathematics Vol. 6,
SIAM, Philadelphia (1989).

[4] W. F. Mitchell, Optimal multilevel iterative methods for adap-
tive grids, SIAM J. Sci. Statist. Comput.13, 146–167 (1992).

[5] M.-C. Rivara, Design and Data Structure of Fully Adaptive,
Multigrid, Finite-Element Software, ACM Trans. Math. Soft-
ware10, 242–264 (1984).
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